课程介绍
课程来自于 【深度之眼】李飞飞讲深度学习
课程大纲
DeepLearning-master
others
visualize_high_dimensional_data.ipynb
start_notebook.sh
requirements.txt
keras_practice
kps
figures
multi-input-multi-output-graph.png
Untitled.ipynb
stateful_lstm.ipynb
imdb_lstm.ipynb
fine_tune_vgg16.ipynb
start_ipython_notebook.sh
requirements.txt
readme.md
.gitignore
deep_learning_with_python
dlwp
others
images
aug_8_7553.png
aug_8_6809.png
aug_7_6061.png
aug_7_547.png
aug_6_6409.png
aug_6_5446.png
aug_5_7587.png
aug_5_6914.png
aug_4_8941.png
aug_4_6203.png
aug_3_7264.png
aug_3_407.png
aug_2_6188.png
aug_2_1863.png
aug_1_8474.png
aug_1_6272.png
aug_0_7671.png
aug_0_1119.png
models
c28
.gitignore
c14
nn-best-model.h5
nn-56--0.83.h5
nn-51--0.82.h5
nn-49--0.81.h5
nn-45--0.81.h5
nn-42--0.80.h5
nn-34--0.79.h5
nn-30--0.79.h5
nn-27--0.78.h5
nn-24--0.77.h5
nn-20--0.77.h5
nn-19--0.76.h5
nn-13--0.76.h5
nn-12--0.76.h5
nn-10--0.75.h5
nn-05--0.75.h5
nn-01--0.64.h5
nn-00--0.63.h5
c13
simple_nn.json
simple_nn.h5
figures
c20_save_augumented_images.png
c19_cnn_structure.png
data_set
wonderland.txt
international-airline-passengers.csv
get_sonar_data.sh
get_pima_indians_diabetes_data.sh
get_iris_data.sh
get_housing_data.sh
.gitignore
c28_generating_text_with_lstm.ipynb
c25_sequence_classification_with_lstm.ipynb
c23_project_predict_time_series_with_fcnn.ipynb
c22_project_predict_sentiment_with_movie_review.ipynb
c21_image_classification_with_cnn.ipynb
c20_image_data_augumentation_with_image_data_generator.ipynb
c19_project_handwritten_digit_recognition.ipynb
c17_lift_performance_with_learning_rate_schedule.ipynb
c16_reduce_overfit_with_dropout.ipynb
c15_plot_trainging_history_data.ipynb
c14_checkpoint_the_bset_weights_during_training.ipynb
c13_save_and_load_keras_model.ipynb
c12_project_regression_of_boston_house_price.ipynb
c11_project_binary_classification_of_sonar_returns.ipynb
c10_project_multiclass_classification.ipynb
c09_use_keras_models_with_scikit-learn_for_general_machine_learning.ipynb
c08_evaluate_the_performance_of_model.ipynb
c07_develop_your_first_neural_network_with_keras.ipynb
c04_introduction_to_tensorflow.ipynb
c03_introduction_to_keras.ipynb
c02_instoduction_to_theano.ipynb
start_ipython_notebook.sh
requirements.txt
readme.md
.gitignore
cs231n
Slides
winter1516_lecture9.pdf
winter1516_lecture8.pdf
winter1516_lecture7.pdf
winter1516_lecture6.pdf
winter1516_lecture5.pdf
winter1516_lecture4.pdf
winter1516_lecture3.pdf
winter1516_lecture2.pdf
winter1516_lecture14.pdf
winter1516_lecture13.pdf
winter1516_lecture12.pdf
winter1516_lecture11.pdf
winter1516_lecture10.pdf
winter1516_lecture1.pdf
Stanford University CS231n_ Convolutional Neural Networks for Visual Recognition.pdf
Notes
Images
l9_visualize_patches.png
l9_visualize_filers.png
l9_visualize_deconvolution.png
l9_visualize_activations.png
l9_t_sne.png
l9_optimization_to_image.png
l9_occlusion_experiments.png
l9_image_reconstructure.png
l9_image_gradient.png
l9_deep_dream.png
l9_deconvolution_approaches.png
l8_selective_search.png
l8_recap.png
l8_overfeat_2.png
l8_overfeat_1.png
l8_localization_as_regression.png
l8_computer_vision_tasks.png
l7_summary.png
l7_pooling_layer.png
l7_convolutional_layer.png
l6_dropout.png
l5_parameters_initialization.png
l5_batch_normalization.png
l4_nerual.png
l4_backpropagation.png
l4_activation_function.png
l3_svm_loss_with_regularization.png
l3_svm_loss.png
l3_softmax_loss_function.png
l3_softmax_function.png
l2_traditional_pipeline.png
l2_deep_learning_pipline.png
l13_upsampling.png
l13_soft_vs_hard2.png
l13_soft_vs_hard1.png
l13_soft_attentation_for_caption.png
l13_similar_to_rcnn.png
l13_semantic_segmentation_cnn.png
l13_refinement.png
l13_multi_scale.png
l13_hypercolumns.png
l13_cascades.png
l11_transfer_learning.png
l11_stack_cnn.png
l11_im2col.png
l11_fft.png
l10_summary.png
l10_rnn_layer3.png
l10_rnn_layer2.png
l10_rnn_layer.png
l10_lstm.png
l10_image_caption.png
L9_Understanding_and_Visualizing_CNNs.md
L8_Spatial_Localization_and_Detection.md
L7_Convoluational_Neural_Networks.md
L6_Training_Neural_Networks_part_2.md
L5_Training_Neural_Networks_part_1.md
L4_Backpropagation_and_Neural_Networks.md
L3_Loss_Functions_and_Optimization.md
L2_Image_Classification_Pipeline.md
L1_Introduction.md
L14_Videos_and_Unspervised_Learning.md
L13_Segmentation_and_Attention.md
L11_CNNs_in_practice.md
L10_Recurrent_Neural_Networks.md
HomeWorks
assignment3
cs231n
datasets
get_tiny_imagenet_a.sh
get_pretrained_model.sh
get_coco_captioning.sh
.gitignore
classifiers
__init__.py
rnn.py
pretrained_cnn.py
__init__.py
setup.py
rnn_layers.py
optim.py
layer_utils.py
layers.py
image_utils.py
im2col_cython.pyx
im2col.py
gradient_check.py
fast_layers.py
data_utils.py
coco_utils.py
captioning_solver.py
Untitled.ipynb
start_ipython_osx.sh
sky.jpg
RNN_Captioning.ipynb
requirements.txt
LSTM_Captioning.ipynb
kitten.jpg
ImageGradients.ipynb
ImageGeneration.ipynb
frameworkpython
collectSubmission.sh
.gitignore
assignment2
cs231n
datasets
get_datasets.sh
.gitignore
classifiers
__init__.py
fc_net.py
cnn.py
__init__.py
vis_utils.py
solver.py
setup.py
optim.py
layer_utils.py
layers.py
im2col_cython.pyx
im2col.py
gradient_check.py
fast_layers.py
data_utils.py
.gitignore
start_ipython_osx.sh
requirements.txt
README.md
puppy.jpg
kitten.jpg
FullyConnectedNets.ipynb
frameworkpython
Dropout.ipynb
ConvolutionalNetworks.ipynb
collectSubmission.sh
BatchNormalization.ipynb
.gitignore
assignment1
cs231n
datasets
get_datasets.sh
.gitignore
classifiers
__init__.py
softmax.py
neural_net.py
linear_svm.py
linear_classifier.py
k_nearest_neighbor.py
__init__.py
vis_utils.py
gradient_check.py
features.py
data_utils.py
.ipynb_checkpoints
two_layer_net.ipynb
svm.ipynb
start_ipython_osx.sh
softmax.ipynb
requirements.txt
README.md
knn.ipynb
frameworkpython
features.ipynb
collectSubmission.sh
.gitignore
README.md
.gitignore
31.来自Jeff Dean的受邀报告(下).mp4
30.来自Jeff Dean的受邀报告(上).mp4.mp4
29.视频检测与无监督学习(下).mp4.mp4
28.视频检测与无监督学习(上).mp4.mp4
27.图像分割与注意力模型(下).mp4.mp4
26.图像分割与注意力模型(上).mp4.mp4
25.深度学习开源库使用介绍(下).mp4.mp4
24.深度学习开源库使用介绍(上).mp4.mp4
23.卷积神经网络工程实践技巧与注意点(下).mp4
22.卷积神经网络工程实践技巧与注意点(上).mp4.mp4
21.循环神经网络(下).mp4
20.循环神经网络(上).mp4
19.卷积神经网络的可视化与进一步理解(下).mp4
18.卷积神经网络的可视化与进一步理解(上).mp4
17.迁移学习之物体定位于检测(下).mp4
16.迁移学习之物体定位于检测(上).mp4
15.卷积神经网络详解(下).mp4
14.卷积神经网络详解(上).mp4
13.神经网络训练细节part2(下).mp4
12.神经网络训练细节part2(上).mp4
11.神经网络训练细节part1(下).mp4
10.神经网络训练细节part1(上).mp4
9.反向传播与神经网络初步(下).mp4
8.反向传播与神经网络初步(上).mp4
7.线性分类器损失函数与最优化(下).mp4
6.线性分类器损失函数与最优化(上).mp4
5.数据驱动的图像分类方式:k最邻近与线性分类器(下).mp4
4.数据驱动的图像分类方式:k最邻近与线性分类器(上).mp4
3.计算机视觉历史回顾与介绍下.mp4
2.计算机视觉历史回顾与介绍中.mp4
1.计算机视觉历史回顾与介绍上.mp4
声明:本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理,邮箱:502212423@qq.com。